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Self introduction

● PostgreSQL Major Contributor

● Responsible for PostgreSQL RPM repos 
(Red Hat, Rocky, Fedora and SLES)

● Fedora and Rocky Linux contributor

● PostgreSQL community member

● Postgres expert @ EDB

● London, UK.
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Nowadays: *Also* DJ’ing!
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Before I start:

● PGDay.UK !

● September 12, 2023

● London, UK

● 1- day single track community conference

● CfP and CfS open:

● https://2023.pgday.uk
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Agenda

● MVCC: The basics

● Data snapshots

● VACUUM

● VACUUM processing

● FREEZE

● VACUUM tuning

● VACUUM FULL
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“*”
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“*”

● Basic question first ;)
● What does * sign represent in SELECT * FROM t1;
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What is MVCC?
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MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation
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MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers to not block writers, writer do not block readers”.
● Multiple version of the same row may occur

○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)
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MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers to not block writers, writer do not block readers”.
● Multiple version of the same row may occur

○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)

● Side effect: VACUUM
○ We will get there ;)
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Transaction id

● “txid”
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● Unique identifier

○ 32-bits, ~ 4 billion
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Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

○ “Circle”
■ 2 billion in the past, 2 billion in the future

○ 3 special (reserved) txids
■ 0:  Invalid
■ 1: Bootstrap
■ 2: Frozen
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Transaction id

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
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Transaction id

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
● Stored in the header of each row

○ xmin: INSERT
○ xmax: UPDATE or DELETE 

■ (0, when this not apply)
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INSERT, DELETE and UPDATE

● INSERT
○ Insertion is done to the first available space

■ xmin: set to the txid
■ xmax: 0



© EnterpriseDB Corporation 2022 - All Rights Reserved

20

INSERT, DELETE and UPDATE
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INSERT, DELETE and UPDATE

● DELETE
○ Logical deletion
○ Long lasting transactions?
○ xmax is set to the txid
○ → dead tuple!
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INSERT, DELETE and UPDATE

First session:
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INSERT, DELETE and UPDATE

Another session:
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INSERT, DELETE and UPDATE

● UPDATE:
○ “Expensive” operation
○ INSERT + DELETE
○ Dead tuple (as a part of deletion)
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INSERT, DELETE and UPDATE
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INSERT, DELETE and UPDATE

Another session:
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INSERT, DELETE and UPDATE

● Consider huge side effects of excessive
DELETEs (and UPDATEs)
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Comboid, cmin, cmax

● pre-8.3: cmin and cmax were separate
● Per comboid.c: “

○ To reduce the header size, cmin and cmax are now overlayed
in the same field in the header.  That usually works because you rarely
insert and delete a tuple in the same transaction, and we don't need
either field to remain valid after the originating transaction exits.
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Data snapshots

29



© EnterpriseDB Corporation 2022 - All Rights Reserved

30

Data snapshots

● Data snapshots
○ Not a physical snapshot
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Data snapshots

● Data snapshots
○ Not a physical snapshot

● Isolation
○ Created at the beginning of the  transaction 
○ Contains committed data
○ Uncommitted data is ignored.
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Data snapshots

● Data snapshots
○ Not a physical snapshot

● Isolation
○ Created at the beginning of the  transaction 
○ Contains committed data
○ Uncommitted data is ignored.

● Also determines VACUUM-able rows or 
non-VACUUM-able rows
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Data snapshots

● Long running transactions
○ pg_dump
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Data snapshots

● Long running transactions
○ pg_dump

● Some parameters:
○ idle_in_transaction_session_timeout (disabled by default)
○ old_snapshot_threshold (disabled by default)



© EnterpriseDB Corporation 2022 - All Rights Reserved

Visibility
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Visibility

● Tuple visibility
○ xmin,xmax
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Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
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Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or  UPDATE

○ UPDATE waiting?
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Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or  UPDATE

○ UPDATE waiting?
● Tip: Commit time is not stored.



© EnterpriseDB Corporation 2022 - All Rights Reserved

40

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or  UPDATE

○ UPDATE waiting?
● Tip: Commit time is not stored.
● Tip: Rollback segments are not available in PostgreSQL

○ No chance for seeing a past consistent state (lively).
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VACUUM
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VACUUM

● A must-do maintenance process for PostgreSQL
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● Cleaning up no-more-needed dead tuples
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VACUUM

● A must-do maintenance process for PostgreSQL
● Cleaning up no-more-needed dead tuples
● Can run against:

○ A single table
○ A few tables
○ A database
○ A few databases
○ All databases
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VACUUM

● A must-do maintenance process for PostgreSQL
● Cleaning up no-more-needed dead tuples
● Can run against:

○ A single table
○ A few tables
○ A database
○ A few databases
○ All databases

● Two main tasks:
○ Removing dead tuples
○ Freezing transaction ids
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VACUUM

● Does not block most of the queries
○ Concurrent vacuums to the same table is not allowed
○ Cannot create index (concurrently or regular)
○ Cannot create trigger
○ Cannot refresh MV
○ Cannot add/remove columns from table
○ Cannot drop table ;)
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VACUUM

● Does not block most of the queries
○ Concurrent vacuums to the same table is not allowed
○ Cannot create index (concurrently or regular)
○ Cannot create trigger
○ Cannot refresh MV
○ Cannot add/remove columns from table
○ Cannot drop table ;)

● I/O
○ Creates I/O (we will get there)
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VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples



© EnterpriseDB Corporation 2022 - All Rights Reserved

49

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples
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○ Freeze “old” transaction ids
○ Update some catalog tables
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VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

● Freezing
○ Freeze “old” transaction ids
○ Update some catalog tables

● Update VM and FSM
● Update statistics (optional)
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VACUUM process

● VACUUMing is done per table, per page.
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VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
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VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
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VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map  (VM) 

and Free Space Map (FSM
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VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map  (VM)

and Free Space Map (FSM)
● Truncate last page(s) of the table

○ If the page is empty
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VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map  (VM)

and Free Space Map (FSM)
● Truncate last page(s) of the table

○ If the page is empty
● Update stats, update catalog tables
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VACUUM: First phase

● Scan the table, and create list of the dead tuples.
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VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Freeze tuples (we will get there)
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VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Freeze tuples (we will get there)
● Cleanup of index tuples 

(which point to the dead and removed tuples)
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VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Freeze tuples (we will get there)
● Cleanup of index tuples 

(which point to the dead and removed tuples)
● NOTE: Dead tuple cleanup is not done at this phase.
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VACUUM: First phase

● Some parameters:
○ Maintenance_work_mem

■ Can also be set per-session
■ VACUUM can utilize up to 1 GB 

 (matches on-disk data file size limit)
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VACUUM: First phase

● Some parameters:
○ Maintenance_work_mem

■ Can also be set per-session
■ VACUUM can utilize up to 1 GB 

 (matches on-disk data file size limit)
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VACUUM: Second phase

● Removal of dead tuples
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VACUUM: Second phase

● Removal of dead tuples
● FSM and VM are updated (per page)
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VACUUM: Second phase

● Removal of dead tuples
● FSM and VM are updated (per page)
● Repairs fragmentation (per page)



© EnterpriseDB Corporation 2022 - All Rights Reserved

67

VACUUM: Third phase

● Final phase
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VACUUM: Third phase

● Final phase
● Index cleanup
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VACUUM: Third phase

● Final phase
● Index cleanup
● Updates stats and system catalogs (per table)
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VACUUM: Third phase

● Final phase
● Index cleanup
● Updates stats and system catalogs (per table)
● Truncation (if applicable)
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VACUUM: Ring buffers

● VACUUM uses “ring buffer”
○ temporary
○ small
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● Does not use buffer pool
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● VACUUM uses “ring buffer”
○ temporary
○ small

● Does not use buffer pool
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VACUUM: Ring buffers

● VACUUM uses “ring buffer”
○ temporary
○ small

● Does not use buffer pool
● Helps keep shared buffers “hot”
● 256 kB

○ Per docs (src/backend/storage/buffer/README):
○ “For sequential scans, a 256 KB ring is used. 

That's small enough to fit in L2 cache, 
which makes transferring pages from OS cache
to shared buffer cache efficient.”
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VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem
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○ A must-avoid problem

● FREEZE
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● Scans all pages (and files, when the table spans more than one file)
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VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

● Scans all pages (and files, when the table spans more than one file)
● Specially reserved txid: 2

○ “Always older than other transaction IDs”
○ “Always visible”
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VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

● Scans all pages (and files, when the table spans more than one file)
● Specially reserved txid: 2

○ “Always older than other transaction IDs”
○ “Always visible”

● vacuum_freeze_min_age
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VACUUM and 
WAL
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WAL

● Logging of transactions
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WAL

● Logging of transactions
● All “modifications” are logged
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WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers 
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WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers 

● So, VACUUM causes extra I/O pressure on WAL
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WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers 

● So, VACUUM causes extra I/O pressure on WAL
○ backups!
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VACUUM and 
replication

86



© EnterpriseDB Corporation 2022 - All Rights Reserved

87

VACUUM and replication

● Long running (SELECT) queries on standby
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VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
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● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to 

conflict with recovery”

90

VACUUM and replication
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VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to 

conflict with recovery”
● Parameter: hot_standby_feedback
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VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to 

conflict with recovery”
● Parameter: hot_standby_feedback
● Side effect: VACUUMs will delay, bloat will increase.
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VACUUM 
performance
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VACUUM performance

● vacuum_cost_delay (0, disabled by default)
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VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
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VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss  (2 by default)
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VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss  (2 by default)
● vacuum_cost_page_dirty  (20 by default)
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VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss  (2 by default)
● vacuum_cost_page_dirty  (20 by default)
● vacuum_cost_limit (200 by default)
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VACUUM performance

● Changing vacuum_cost_delay will result in less
I/O over the time, but then VACUUM will take
longer.
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VACUUM performance

● Changing vacuum_cost_delay will result in less
I/O over the time, but then VACUUM will take
longer.

● This is the way to throttle VACUUM process.
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Autovacuum 
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AUTOVACUUM

● Since PostgreSQL 8.1
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AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
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AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
● Kicks off to prevent transaction ID wraparound.
● On by default.
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AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
● Kicks off to prevent transaction ID wraparound.
● On by default.

○ Do not turn it off!
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AUTOVACUUM: Is everything cool?

● No.
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AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours.



© EnterpriseDB Corporation 2022 - All Rights Reserved

109

AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours
● May / will prioritize busy tables

○ Some tables may / will be untouched
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AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours
● May / will prioritize busy tables

○ Some tables may / will be untouched
● Anti-wraparound vacuum cannot be stopped.

○ Will start even if autovacuum is turned off.
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AUTOVACUUM: Is everything cool?

● More workers -> more I/O
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AUTOVACUUM: Is everything cool?

● More workers -> more I/O
● More workers -> more RAM usage 

(maintenance_work_mem)
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AUTOVACUUM: Is everything cool?

● More workers -> more I/O
● More workers -> more RAM usage 

(maintenance_work_mem)
● Cancels itself when a higher lock level is required

by another transaction
○ Some tables may never be autovacuumed.
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AUTOVACUUM: parameters

● autovacuum_work_mem = -1
● log_autovacuum_min_duration = 10min
● autovacuum = on
● autovacuum_max_workers = 3
● autovacuum_naptime = 1min
● autovacuum_vacuum_threshold = 50
● autovacuum_vacuum_insert_threshold = 1000
● autovacuum_analyze_threshold = 50
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AUTOVACUUM: parameters

● autovacuum_vacuum_scale_factor = 0.2
● autovacuum_vacuum_insert_scale_factor = 0.2
● autovacuum_analyze_scale_factor = 0.1
● autovacuum_freeze_max_age = 200000000 
● autovacuum_multixact_freeze_max_age = 400000000
● autovacuum_vacuum_cost_delay = 2ms  
● autovacuum_vacuum_cost_limit = -1
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Autovacuum: Tuning per table

ALTER TABLE t1
 SET (autovacuum_vacuum_scale_factor = 0.05,
      autovacuum_vacuum_threshold = 200000,
      autovacuum_analyze_scale_factor = 0.1,
      autovacuum_analyze_threshold = 200000);

● Can be used to customize autovac settings
for some tables
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VACUUM and 
autovacuum

117
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VACUUM and autovacuum

● Can live together.
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● Tuning both of them will help overall performance.
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● We suggest using cron-based VACUUM.
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VACUUM and autovacuum

● Can live together.
● Tuning both of them will help overall performance.
● We suggest using cron-based VACUUM.

○ This will very likely prevent peak-time autovacuum accidents.
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VACUUM FULL 

122
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VACUUM FULL
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VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
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VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
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VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
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VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table
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VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table
● Requires disk space similar to the table size.
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VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table
● Requires disk space similar to the table size.
● Downtime!
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VACUUM FULL: Non-blocking Alternative

● Some alternatives exist
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VACUUM FULL: Non-blocking Alternative

● Some alternatives exist
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VACUUM FULL: Non-blocking Alternative

● Some alternatives exist
○ pg_repack
○ pg_squeeze 
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pg_stat_progress_vacuum

pid | 18303
datid | 19323
datname | foobar
relid | 19870
phase | scanning heap
heap_blks_total | 370044
heap_blks_scanned | 13443
heap_blks_vacuumed | 0
index_vacuum_count | 0
max_dead_tuples | 107682804
num_dead_tuples | 149101
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VACUUM VERBOSE

● INFO:  finished vacuuming "onlinedps.pg_toast.pg_toast_20508": index scans: 0
● pages: 0 removed, 0 remain, 0 scanned (100.00% of total)
● tuples: 0 removed, 0 remain, 0 are dead but not yet removable
● removable cutoff: 30184655, which was 3 XIDs old when operation ended
● new relfrozenxid: 30184655, which is 30180246 XIDs ahead of previous value
● new relminmxid: 16, which is 15 MXIDs ahead of previous value
● index scan not needed: 0 pages from table (100.00% of total) had 0 dead item identifiers 

removed
● I/O timings: read: 0.051 ms, write: 0.000 ms
● avg read rate: 32.150 MB/s, avg write rate: 0.000 MB/s
● buffer usage: 19 hits, 1 misses, 0 dirtied
● WAL usage: 1 records, 0 full page images, 188 bytes
● system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s
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THANK YOU

135

Now it is time for questions!
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