
© EnterpriseDB Corporation 2022 - All Rights Reserved

VACUUM

1

Devrim Gündüz
Postgres Expert @ EDB
Twitter: @DevrimGunduz

27 Jun 2023

© EnterpriseDB Corporation 2022 - All Rights Reserved

Self introduction

● PostgreSQL Major Contributor

● Responsible for PostgreSQL RPM repos
(Red Hat, Rocky, Fedora and SLES)

● Fedora and Rocky Linux contributor

● PostgreSQL community member

● Postgres expert @ EDB

● London, UK.

2

© EnterpriseDB Corporation 2022 - All Rights Reserved

Nowadays: *Also* DJ’ing!

3

© EnterpriseDB Corporation 2022 - All Rights Reserved

Before I start:

● PGDay.UK !

● September 12, 2023

● London, UK

● 1- day single track community conference

● CfP and CfS open:

● https://2023.pgday.uk

4

© EnterpriseDB Corporation 2022 - All Rights Reserved

Agenda

● MVCC: The basics

● Data snapshots

● VACUUM

● VACUUM processing

● FREEZE

● VACUUM tuning

● VACUUM FULL

5

© EnterpriseDB Corporation 2022 - All Rights Reserved

“*”

6

© EnterpriseDB Corporation 2022 - All Rights Reserved

7

“*”

● Basic question first ;)
● What does * sign represent in SELECT * FROM t1;

© EnterpriseDB Corporation 2022 - All Rights Reserved

What is MVCC?

8

© EnterpriseDB Corporation 2022 - All Rights Reserved

9

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

© EnterpriseDB Corporation 2022 - All Rights Reserved

10

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers to not block writers, writer do not block readers”.

© EnterpriseDB Corporation 2022 - All Rights Reserved

11

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers to not block writers, writer do not block readers”.
● Multiple version of the same row may occur

○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)

© EnterpriseDB Corporation 2022 - All Rights Reserved

12

MVCC

● Multi Version Concurrency Control
○ Implementation of concurrency in Postgres
○ Snapshot isolation

● “Readers to not block writers, writer do not block readers”.
● Multiple version of the same row may occur

○ New versions are created during updates
○ Uncommitted transactions
○ Dead tuples (see next slides)

● Side effect: VACUUM
○ We will get there ;)

© EnterpriseDB Corporation 2022 - All Rights Reserved

13

Transaction id

● “txid”

© EnterpriseDB Corporation 2022 - All Rights Reserved

14

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

© EnterpriseDB Corporation 2022 - All Rights Reserved

15

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

○ “Circle”
■ 2 billion in the past, 2 billion in the future

© EnterpriseDB Corporation 2022 - All Rights Reserved

16

Transaction id

● “txid”
● Unique identifier

○ 32-bits, ~ 4 billion
■ 64-bits txid is being discussed

○ “Circle”
■ 2 billion in the past, 2 billion in the future

○ 3 special (reserved) txids
■ 0: Invalid
■ 1: Bootstrap
■ 2: Frozen

© EnterpriseDB Corporation 2022 - All Rights Reserved

17

Transaction id

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()

© EnterpriseDB Corporation 2022 - All Rights Reserved

18

Transaction id

● SELECT
○ Utilizes “virtual txid”

■ txid_current_if_assigned()
● Stored in the header of each row

○ xmin: INSERT
○ xmax: UPDATE or DELETE

■ (0, when this not apply)

© EnterpriseDB Corporation 2022 - All Rights Reserved

19

INSERT, DELETE and UPDATE

● INSERT
○ Insertion is done to the first available space

■ xmin: set to the txid
■ xmax: 0

© EnterpriseDB Corporation 2022 - All Rights Reserved

20

INSERT, DELETE and UPDATE

© EnterpriseDB Corporation 2022 - All Rights Reserved

21

INSERT, DELETE and UPDATE

● DELETE
○ Logical deletion
○ Long lasting transactions?
○ xmax is set to the txid
○ → dead tuple!

© EnterpriseDB Corporation 2022 - All Rights Reserved

22

INSERT, DELETE and UPDATE

First session:

© EnterpriseDB Corporation 2022 - All Rights Reserved

23

INSERT, DELETE and UPDATE

Another session:

© EnterpriseDB Corporation 2022 - All Rights Reserved

24

INSERT, DELETE and UPDATE

● UPDATE:
○ “Expensive” operation
○ INSERT + DELETE
○ Dead tuple (as a part of deletion)

© EnterpriseDB Corporation 2022 - All Rights Reserved

25

INSERT, DELETE and UPDATE

© EnterpriseDB Corporation 2022 - All Rights Reserved

26

INSERT, DELETE and UPDATE

Another session:

© EnterpriseDB Corporation 2022 - All Rights Reserved

27

INSERT, DELETE and UPDATE

● Consider huge side effects of excessive
DELETEs (and UPDATEs)

© EnterpriseDB Corporation 2022 - All Rights Reserved

28

Comboid, cmin, cmax

● pre-8.3: cmin and cmax were separate
● Per comboid.c: “

○ To reduce the header size, cmin and cmax are now overlayed
in the same field in the header. That usually works because you rarely
insert and delete a tuple in the same transaction, and we don't need
either field to remain valid after the originating transaction exits.

© EnterpriseDB Corporation 2022 - All Rights Reserved

Data snapshots

29

© EnterpriseDB Corporation 2022 - All Rights Reserved

30

Data snapshots

● Data snapshots
○ Not a physical snapshot

© EnterpriseDB Corporation 2022 - All Rights Reserved

31

Data snapshots

● Data snapshots
○ Not a physical snapshot

● Isolation
○ Created at the beginning of the transaction
○ Contains committed data
○ Uncommitted data is ignored.

© EnterpriseDB Corporation 2022 - All Rights Reserved

32

Data snapshots

● Data snapshots
○ Not a physical snapshot

● Isolation
○ Created at the beginning of the transaction
○ Contains committed data
○ Uncommitted data is ignored.

● Also determines VACUUM-able rows or
non-VACUUM-able rows

© EnterpriseDB Corporation 2022 - All Rights Reserved

33

Data snapshots

● Long running transactions
○ pg_dump

© EnterpriseDB Corporation 2022 - All Rights Reserved

34

Data snapshots

● Long running transactions
○ pg_dump

● Some parameters:
○ idle_in_transaction_session_timeout (disabled by default)
○ old_snapshot_threshold (disabled by default)

© EnterpriseDB Corporation 2022 - All Rights Reserved

Visibility

35

© EnterpriseDB Corporation 2022 - All Rights Reserved

36

Visibility

● Tuple visibility
○ xmin,xmax

© EnterpriseDB Corporation 2022 - All Rights Reserved

37

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot

© EnterpriseDB Corporation 2022 - All Rights Reserved

38

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or UPDATE

○ UPDATE waiting?

© EnterpriseDB Corporation 2022 - All Rights Reserved

39

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or UPDATE

○ UPDATE waiting?
● Tip: Commit time is not stored.

© EnterpriseDB Corporation 2022 - All Rights Reserved

40

Visibility

● Tuple visibility
○ xmin,xmax

● Only one version is available in a snapshot
● Visibility definition:

○ That row version is already committed before the transaction start time
■ Could be INSERT, or UPDATE

○ UPDATE waiting?
● Tip: Commit time is not stored.
● Tip: Rollback segments are not available in PostgreSQL

○ No chance for seeing a past consistent state (lively).

© EnterpriseDB Corporation 2022 - All Rights Reserved

VACUUM

41

© EnterpriseDB Corporation 2022 - All Rights Reserved

42

VACUUM

● A must-do maintenance process for PostgreSQL

© EnterpriseDB Corporation 2022 - All Rights Reserved

43

VACUUM

● A must-do maintenance process for PostgreSQL
● Cleaning up no-more-needed dead tuples

© EnterpriseDB Corporation 2022 - All Rights Reserved

44

VACUUM

● A must-do maintenance process for PostgreSQL
● Cleaning up no-more-needed dead tuples
● Can run against:

○ A single table
○ A few tables
○ A database
○ A few databases
○ All databases

© EnterpriseDB Corporation 2022 - All Rights Reserved

45

VACUUM

● A must-do maintenance process for PostgreSQL
● Cleaning up no-more-needed dead tuples
● Can run against:

○ A single table
○ A few tables
○ A database
○ A few databases
○ All databases

● Two main tasks:
○ Removing dead tuples
○ Freezing transaction ids

© EnterpriseDB Corporation 2022 - All Rights Reserved

46

VACUUM

● Does not block most of the queries
○ Concurrent vacuums to the same table is not allowed
○ Cannot create index (concurrently or regular)
○ Cannot create trigger
○ Cannot refresh MV
○ Cannot add/remove columns from table
○ Cannot drop table ;)

© EnterpriseDB Corporation 2022 - All Rights Reserved

47

VACUUM

● Does not block most of the queries
○ Concurrent vacuums to the same table is not allowed
○ Cannot create index (concurrently or regular)
○ Cannot create trigger
○ Cannot refresh MV
○ Cannot add/remove columns from table
○ Cannot drop table ;)

● I/O
○ Creates I/O (we will get there)

© EnterpriseDB Corporation 2022 - All Rights Reserved

48

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

© EnterpriseDB Corporation 2022 - All Rights Reserved

49

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

● Freezing
○ Freeze “old” transaction ids
○ Update some catalog tables

© EnterpriseDB Corporation 2022 - All Rights Reserved

50

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

● Freezing
○ Freeze “old” transaction ids
○ Update some catalog tables

● Update VM and FSM

© EnterpriseDB Corporation 2022 - All Rights Reserved

51

VACUUM tasks

● Removes dead tuples
○ Clean up dead tuples
○ Also cleans up index pages (pointing to the dead tuples

● Freezing
○ Freeze “old” transaction ids
○ Update some catalog tables

● Update VM and FSM
● Update statistics (optional)

© EnterpriseDB Corporation 2022 - All Rights Reserved

52

VACUUM process

● VACUUMing is done per table, per page.

© EnterpriseDB Corporation 2022 - All Rights Reserved

53

VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples

© EnterpriseDB Corporation 2022 - All Rights Reserved

54

VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples

© EnterpriseDB Corporation 2022 - All Rights Reserved

55

VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map (VM)

and Free Space Map (FSM

© EnterpriseDB Corporation 2022 - All Rights Reserved

56

VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map (VM)

and Free Space Map (FSM)
● Truncate last page(s) of the table

○ If the page is empty

© EnterpriseDB Corporation 2022 - All Rights Reserved

57

VACUUM process

● VACUUMing is done per table, per page.
● Scan pages for dead tuples
● Remove index entries pointing to the dead tuples
● Update Visibility Map (VM)

and Free Space Map (FSM)
● Truncate last page(s) of the table

○ If the page is empty
● Update stats, update catalog tables

© EnterpriseDB Corporation 2022 - All Rights Reserved

58

VACUUM: First phase

● Scan the table, and create list of the dead tuples.

© EnterpriseDB Corporation 2022 - All Rights Reserved

59

VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Freeze tuples (we will get there)

© EnterpriseDB Corporation 2022 - All Rights Reserved

60

VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Freeze tuples (we will get there)
● Cleanup of index tuples

(which point to the dead and removed tuples)

© EnterpriseDB Corporation 2022 - All Rights Reserved

61

VACUUM: First phase

● Scan the table, and create list of the dead tuples.
● Freeze tuples (we will get there)
● Cleanup of index tuples

(which point to the dead and removed tuples)
● NOTE: Dead tuple cleanup is not done at this phase.

© EnterpriseDB Corporation 2022 - All Rights Reserved

62

VACUUM: First phase

● Some parameters:
○ Maintenance_work_mem

■ Can also be set per-session
■ VACUUM can utilize up to 1 GB

 (matches on-disk data file size limit)

© EnterpriseDB Corporation 2022 - All Rights Reserved

63

VACUUM: First phase

● Some parameters:
○ Maintenance_work_mem

■ Can also be set per-session
■ VACUUM can utilize up to 1 GB

 (matches on-disk data file size limit)

© EnterpriseDB Corporation 2022 - All Rights Reserved

64

VACUUM: Second phase

● Removal of dead tuples

© EnterpriseDB Corporation 2022 - All Rights Reserved

65

VACUUM: Second phase

● Removal of dead tuples
● FSM and VM are updated (per page)

© EnterpriseDB Corporation 2022 - All Rights Reserved

66

VACUUM: Second phase

● Removal of dead tuples
● FSM and VM are updated (per page)
● Repairs fragmentation (per page)

© EnterpriseDB Corporation 2022 - All Rights Reserved

67

VACUUM: Third phase

● Final phase

© EnterpriseDB Corporation 2022 - All Rights Reserved

68

VACUUM: Third phase

● Final phase
● Index cleanup

© EnterpriseDB Corporation 2022 - All Rights Reserved

69

VACUUM: Third phase

● Final phase
● Index cleanup
● Updates stats and system catalogs (per table)

© EnterpriseDB Corporation 2022 - All Rights Reserved

70

VACUUM: Third phase

● Final phase
● Index cleanup
● Updates stats and system catalogs (per table)
● Truncation (if applicable)

© EnterpriseDB Corporation 2022 - All Rights Reserved

71

VACUUM: Ring buffers

● VACUUM uses “ring buffer”
○ temporary
○ small

© EnterpriseDB Corporation 2022 - All Rights Reserved

72

VACUUM: Ring buffers

● VACUUM uses “ring buffer”
○ temporary
○ small

● Does not use buffer pool

© EnterpriseDB Corporation 2022 - All Rights Reserved

73

VACUUM: Ring buffers

● VACUUM uses “ring buffer”
○ temporary
○ small

● Does not use buffer pool
● Helps keep shared buffers “hot”

© EnterpriseDB Corporation 2022 - All Rights Reserved

74

VACUUM: Ring buffers

● VACUUM uses “ring buffer”
○ temporary
○ small

● Does not use buffer pool
● Helps keep shared buffers “hot”
● 256 kB

○ Per docs (src/backend/storage/buffer/README):
○ “For sequential scans, a 256 KB ring is used.

That's small enough to fit in L2 cache,
which makes transferring pages from OS cache
to shared buffer cache efficient.”

© EnterpriseDB Corporation 2022 - All Rights Reserved

75

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

© EnterpriseDB Corporation 2022 - All Rights Reserved

76

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

© EnterpriseDB Corporation 2022 - All Rights Reserved

77

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

● Scans all pages (and files, when the table spans more than one file)

© EnterpriseDB Corporation 2022 - All Rights Reserved

78

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

● Scans all pages (and files, when the table spans more than one file)
● Specially reserved txid: 2

○ “Always older than other transaction IDs”
○ “Always visible”

© EnterpriseDB Corporation 2022 - All Rights Reserved

79

VACUUM: FREEZE

● “Transaction ID wraparound problem”
○ Time to recall “circle”
○ A must-avoid problem

● FREEZE
○ frozen txid

● Scans all pages (and files, when the table spans more than one file)
● Specially reserved txid: 2

○ “Always older than other transaction IDs”
○ “Always visible”

● vacuum_freeze_min_age

© EnterpriseDB Corporation 2022 - All Rights Reserved

VACUUM and
WAL

80

© EnterpriseDB Corporation 2022 - All Rights Reserved

81

WAL

● Logging of transactions

© EnterpriseDB Corporation 2022 - All Rights Reserved

82

WAL

● Logging of transactions
● All “modifications” are logged

© EnterpriseDB Corporation 2022 - All Rights Reserved

83

WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers

© EnterpriseDB Corporation 2022 - All Rights Reserved

84

WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers

● So, VACUUM causes extra I/O pressure on WAL

© EnterpriseDB Corporation 2022 - All Rights Reserved

85

WAL

● Logging of transactions
● All “modifications” are logged
● VACUUM -> page modifications -> WAL

○ Crash recovery
○ Also required for replica servers

● So, VACUUM causes extra I/O pressure on WAL
○ backups!

© EnterpriseDB Corporation 2022 - All Rights Reserved

VACUUM and
replication

86

© EnterpriseDB Corporation 2022 - All Rights Reserved

87

VACUUM and replication

● Long running (SELECT) queries on standby

© EnterpriseDB Corporation 2022 - All Rights Reserved

88

VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary

© EnterpriseDB Corporation 2022 - All Rights Reserved

89

VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in

© EnterpriseDB Corporation 2022 - All Rights Reserved

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to

conflict with recovery”

90

VACUUM and replication

© EnterpriseDB Corporation 2022 - All Rights Reserved

91

VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to

conflict with recovery”
● Parameter: hot_standby_feedback

© EnterpriseDB Corporation 2022 - All Rights Reserved

92

VACUUM and replication

● Long running (SELECT) queries on standby
● Row is / rows are modified on primary
● VACUUM kicks in
● Standby: “ERROR: canceling statement due to

conflict with recovery”
● Parameter: hot_standby_feedback
● Side effect: VACUUMs will delay, bloat will increase.

© EnterpriseDB Corporation 2022 - All Rights Reserved

VACUUM
performance

93

© EnterpriseDB Corporation 2022 - All Rights Reserved

94

VACUUM performance

● vacuum_cost_delay (0, disabled by default)

© EnterpriseDB Corporation 2022 - All Rights Reserved

95

VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)

© EnterpriseDB Corporation 2022 - All Rights Reserved

96

VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss (2 by default)

© EnterpriseDB Corporation 2022 - All Rights Reserved

97

VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss (2 by default)
● vacuum_cost_page_dirty (20 by default)

© EnterpriseDB Corporation 2022 - All Rights Reserved

98

VACUUM performance

● vacuum_cost_delay (0, disabled by default)
● vacuum_cost_page_hit (1 by default)
● vacuum_cost_page_miss (2 by default)
● vacuum_cost_page_dirty (20 by default)
● vacuum_cost_limit (200 by default)

© EnterpriseDB Corporation 2022 - All Rights Reserved

99

VACUUM performance

● Changing vacuum_cost_delay will result in less
I/O over the time, but then VACUUM will take
longer.

© EnterpriseDB Corporation 2022 - All Rights Reserved

100

VACUUM performance

● Changing vacuum_cost_delay will result in less
I/O over the time, but then VACUUM will take
longer.

● This is the way to throttle VACUUM process.

© EnterpriseDB Corporation 2022 - All Rights Reserved

Autovacuum

101

© EnterpriseDB Corporation 2022 - All Rights Reserved

102

AUTOVACUUM

● Since PostgreSQL 8.1

© EnterpriseDB Corporation 2022 - All Rights Reserved

103

AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.

© EnterpriseDB Corporation 2022 - All Rights Reserved

104

AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
● Kicks off to prevent transaction ID wraparound.

© EnterpriseDB Corporation 2022 - All Rights Reserved

105

AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
● Kicks off to prevent transaction ID wraparound.
● On by default.

© EnterpriseDB Corporation 2022 - All Rights Reserved

106

AUTOVACUUM

● Since PostgreSQL 8.1
● Kicks off autovacuum/autoanalyze, per parameters.
● Kicks off to prevent transaction ID wraparound.
● On by default.

○ Do not turn it off!

© EnterpriseDB Corporation 2022 - All Rights Reserved

107

AUTOVACUUM: Is everything cool?

● No.

© EnterpriseDB Corporation 2022 - All Rights Reserved

108

AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours.

© EnterpriseDB Corporation 2022 - All Rights Reserved

109

AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours
● May / will prioritize busy tables

○ Some tables may / will be untouched

© EnterpriseDB Corporation 2022 - All Rights Reserved

110

AUTOVACUUM: Is everything cool?

● No.
● Murphy rule: Autovacuum will kick of during peak hours
● May / will prioritize busy tables

○ Some tables may / will be untouched
● Anti-wraparound vacuum cannot be stopped.

○ Will start even if autovacuum is turned off.

© EnterpriseDB Corporation 2022 - All Rights Reserved

111

AUTOVACUUM: Is everything cool?

● More workers -> more I/O

© EnterpriseDB Corporation 2022 - All Rights Reserved

112

AUTOVACUUM: Is everything cool?

● More workers -> more I/O
● More workers -> more RAM usage

(maintenance_work_mem)

© EnterpriseDB Corporation 2022 - All Rights Reserved

113

AUTOVACUUM: Is everything cool?

● More workers -> more I/O
● More workers -> more RAM usage

(maintenance_work_mem)
● Cancels itself when a higher lock level is required

by another transaction
○ Some tables may never be autovacuumed.

© EnterpriseDB Corporation 2022 - All Rights Reserved

114

AUTOVACUUM: parameters

● autovacuum_work_mem = -1
● log_autovacuum_min_duration = 10min
● autovacuum = on
● autovacuum_max_workers = 3
● autovacuum_naptime = 1min
● autovacuum_vacuum_threshold = 50
● autovacuum_vacuum_insert_threshold = 1000
● autovacuum_analyze_threshold = 50

© EnterpriseDB Corporation 2022 - All Rights Reserved

115

AUTOVACUUM: parameters

● autovacuum_vacuum_scale_factor = 0.2
● autovacuum_vacuum_insert_scale_factor = 0.2
● autovacuum_analyze_scale_factor = 0.1
● autovacuum_freeze_max_age = 200000000
● autovacuum_multixact_freeze_max_age = 400000000
● autovacuum_vacuum_cost_delay = 2ms
● autovacuum_vacuum_cost_limit = -1

© EnterpriseDB Corporation 2022 - All Rights Reserved

116

Autovacuum: Tuning per table

ALTER TABLE t1
 SET (autovacuum_vacuum_scale_factor = 0.05,
 autovacuum_vacuum_threshold = 200000,
 autovacuum_analyze_scale_factor = 0.1,
 autovacuum_analyze_threshold = 200000);

● Can be used to customize autovac settings
for some tables

© EnterpriseDB Corporation 2022 - All Rights Reserved

VACUUM and
autovacuum

117

© EnterpriseDB Corporation 2022 - All Rights Reserved

118

VACUUM and autovacuum

● Can live together.

© EnterpriseDB Corporation 2022 - All Rights Reserved

119

VACUUM and autovacuum

● Can live together.
● Tuning both of them will help overall performance.

© EnterpriseDB Corporation 2022 - All Rights Reserved

120

VACUUM and autovacuum

● Can live together.
● Tuning both of them will help overall performance.
● We suggest using cron-based VACUUM.

© EnterpriseDB Corporation 2022 - All Rights Reserved

121

VACUUM and autovacuum

● Can live together.
● Tuning both of them will help overall performance.
● We suggest using cron-based VACUUM.

○ This will very likely prevent peak-time autovacuum accidents.

© EnterpriseDB Corporation 2022 - All Rights Reserved

VACUUM FULL

122

© EnterpriseDB Corporation 2022 - All Rights Reserved

123

VACUUM FULL

© EnterpriseDB Corporation 2022 - All Rights Reserved

124

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.

© EnterpriseDB Corporation 2022 - All Rights Reserved

125

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.

© EnterpriseDB Corporation 2022 - All Rights Reserved

126

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table

© EnterpriseDB Corporation 2022 - All Rights Reserved

127

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table

© EnterpriseDB Corporation 2022 - All Rights Reserved

128

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table
● Requires disk space similar to the table size.

© EnterpriseDB Corporation 2022 - All Rights Reserved

129

VACUUM FULL

● “Cut my life into pieces, this is my last resort”.
● Last resort.
● Rewrites the table
● Requires ACCESS EXCLUSIVE LOCK

○ The only transaction that runs against the table
● Requires disk space similar to the table size.
● Downtime!

© EnterpriseDB Corporation 2022 - All Rights Reserved

130

VACUUM FULL: Non-blocking Alternative

● Some alternatives exist

© EnterpriseDB Corporation 2022 - All Rights Reserved

131

VACUUM FULL: Non-blocking Alternative

● Some alternatives exist

© EnterpriseDB Corporation 2022 - All Rights Reserved

132

VACUUM FULL: Non-blocking Alternative

● Some alternatives exist
○ pg_repack
○ pg_squeeze

© EnterpriseDB Corporation 2022 - All Rights Reserved

133

pg_stat_progress_vacuum

pid | 18303
datid | 19323
datname | foobar
relid | 19870
phase | scanning heap
heap_blks_total | 370044
heap_blks_scanned | 13443
heap_blks_vacuumed | 0
index_vacuum_count | 0
max_dead_tuples | 107682804
num_dead_tuples | 149101

© EnterpriseDB Corporation 2022 - All Rights Reserved

134

VACUUM VERBOSE

● INFO: finished vacuuming "onlinedps.pg_toast.pg_toast_20508": index scans: 0
● pages: 0 removed, 0 remain, 0 scanned (100.00% of total)
● tuples: 0 removed, 0 remain, 0 are dead but not yet removable
● removable cutoff: 30184655, which was 3 XIDs old when operation ended
● new relfrozenxid: 30184655, which is 30180246 XIDs ahead of previous value
● new relminmxid: 16, which is 15 MXIDs ahead of previous value
● index scan not needed: 0 pages from table (100.00% of total) had 0 dead item identifiers

removed
● I/O timings: read: 0.051 ms, write: 0.000 ms
● avg read rate: 32.150 MB/s, avg write rate: 0.000 MB/s
● buffer usage: 19 hits, 1 misses, 0 dirtied
● WAL usage: 1 records, 0 full page images, 188 bytes
● system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

© EnterpriseDB Corporation 2022 - All Rights Reserved

135

THANK YOU

135

Now it is time for questions!

© EnterpriseDB Corporation 2022 - All Rights Reserved

VACUUM
Devrim Gündüz
Postgres Expert @ EDB
Twitter: @DevrimGunduz

27 Jun 2023

136

